
AutoAnt Documentation
Release 0.2.0

Daniel Vaz Gaspar

June 26, 2016





Contents

1 Fixes, bugs and contributions 3

2 Installation 5

3 Using pip 7

4 The Idea 9

5 Quick HowTo 11

6 Producers and Processors 13

7 Producer - Directory Monitor 15

8 Processors 17

9 Processor - SCP 19

10 Processor - SMB 21

11 Processor - FTP 23

12 Processor - Rename 25

13 Processor - Move 27

14 Processor - Copy 29

i



ii



AutoAnt Documentation, Release 0.2.0

AutoAnt is an object processing automation package. It’s ideal for file processing, if you need to pro-
cess/syncronize/move files on several directories to different locations (local or remote) and then renam-
ing/moving/deleting or what ever you want. This is the answer.

It’s extremely flexible and extensible, just describe your Sys Admin file/something processing nightmare on a JSON
file.

Contents 1



AutoAnt Documentation, Release 0.2.0

2 Contents



CHAPTER 1

Fixes, bugs and contributions

You’re welcome to report bugs, propose new features, or even better contribute to this project.

Issues, bugs and new features

Contribute

3

https://github.com/dpgaspar/AutoAnt/issues/new
https://github.com/dpgaspar/AutoAnt/fork


AutoAnt Documentation, Release 0.2.0

4 Chapter 1. Fixes, bugs and contributions



CHAPTER 2

Installation

Installation is straightforward, using the normal python package install.

5



AutoAnt Documentation, Release 0.2.0

6 Chapter 2. Installation



CHAPTER 3

Using pip

• Simple Install

You can install AutoAnt simply by:

$ pip install autoant

• Advised Virtual Environment Install

Virtual env is highly advisable because the more projects you have, the more likely it is that you will
be working with different versions of Python itself, or at least different versions of Python libraries.
Let’s face it: quite often libraries break backwards compatibility, and it’s unlikely that any serious
application will have zero dependencies. So what do you do if two or more of your projects have
conflicting dependencies?

If you are on Mac OS X or Linux, chances are that one of the following two commands will work for
you:

$ sudo easy_install virtualenv

or even better:

$ sudo pip install virtualenv

One of these will probably install virtualenv on your system. Maybe it’s even in your package
manager. If you use a debian system (like Ubuntu), try:

$ sudo apt-get install python-virtualenv

Once you have virtualenv installed, :

$ mkdir myproject
$ cd myproject
$ virtualenv venv
New python executable in venv/bin/python
Installing distribute............done.
$ . venv/bin/activate
(venv)$

Now install AutoAnt on the virtual env, it will install all the dependencies and these will be isolated
from your system’s python packages

(venv)$ pip install autoant

Next you can run the command line utility, to check if everything is ok :)

7



AutoAnt Documentation, Release 0.2.0

(venv)$ autoant_console -h

8 Chapter 3. Using pip



CHAPTER 4

The Idea

AutoAnt structure is based on Producers and Processors, every item produced is subject to a processing sequence.
You can have many Producers associated to Nth processing sequences.

Producers - Will produce objects to be processed.

Processors - Will process the objects.

AutoAnt has a command line utility that you can use for easy scheduling, or on your own scripts. It will read a JSON
config file that describes the automation process.

The config file is a list of objects containing the following structure:

[
{

"producer_sequence": [
{

"name": "SOME UNIQUE ID",
"type_key": "KEY OF PRODUCER",
...

},
...

]
"processor_sequence": [

{
"name": "SOME UNIQUE ID",
"type_key": "KEY OF PROCESSOR",
...

},
....

]
},
....

]

It’s config is a list of automation steps that can be run on a different threads (optional). Each step is an object with a
list of producers and a list of processors. Every item (files, lines on a file, db records) is submitted to the processing
sequence.

Every producer and processor has a type and a name, this is required.

9



AutoAnt Documentation, Release 0.2.0

10 Chapter 4. The Idea



CHAPTER 5

Quick HowTo

Enough talk, let’s go right into a quick example.

Let’s say you have some file processing to do, and you need to automate it, probably you have already made tons of
similar scripts on file automation, but every time you have a new problem you have to write something new, for the
same abstract issue.

On our example, you have a database that generates data files, these files are supposed to be processed on a remote
server, for the first task you have to copy every new file to a remote FTP server.

We are going to write a JSON configuration file describing AutoAnt solution:

[
{

"producer_sequence": [
{

"name": "DBSOURCE",
"type_key": dir_mon",
"basedir": "/db/export/contacts",
"recursive": "True"

}
]
"process_sequence": [

{
"name": "Remote",
"type_key": "ftp",
"remote_dir": "/contacts",
"remote_host": "remoteserver.domain.com",
"username": "user",
"password": "password"

}
]

}
]

Know add to your scheduling system crontab on UNIX or Scheduled Tasks on Windows.

crontab:

*/5 * * * * autoant_console --config /home/of/config/config.json &>> autoant.log

Note: If you’re running on a python’s virtual env has advised, you will have to write a small script to activate the
enviroment and then execute autoant.

AutoAnt will every 5 minutes look for new files on your local directory /db/exports/contacts/ every new file will be
sent to *remoteserver.domain.com . This is ok, what will AutoAnt add to this apparently simple task

11



AutoAnt Documentation, Release 0.2.0

• You will have a detailed and highly configurable log, using python’s standard lib, logging.

• If something goes wrong on your file processing (remote server is down or something), the failed files will be
reprocessed next time, without the use of moving/coping/renaming the succeeded ones.

• The copy is recursive and differential the directory structure will be created on the remote site.

• If a file is still open (being created by the database on this example), the file is not processed this time. (Linux
only feature).

• Integrated extensible highly configurable system.

• Over loop prevention, AutoAnt will not run if another instance using the same config is still processing.

Now your company wants to copy the same files to a different location but this time they only accept SFTP (they
probably know better then FTP). Just add a json object to the ‘process_sequence’ property:

[
{

"producer_sequence": [
{

"name": "DBSOURCE",
"type_key": dir_mon",
"basedir": "/db/export/contacts",
"recursive": "True"

}
]
"process_sequence": [

{
"name": "Remote",
"type_key": "ftp",
"remote_dir": "/contacts",
"remote_host": "remoteserver.domain.com",
"username": "user",
"password": "password"

},
{

"name": "Remote2",
"type_key": "scp",
"remote_dir": "",
"remote_host": "remoteserver2.domain.com",
"username": "user2",
"password": "password"

}
]

}
]

You have two remote copies, and if either fails they will be reprocessed. If a file put or connection fails, on Remote2
second copy, it will be resent next up time and only to remoteserver2.domain.com.

Remember each item on a processing sequence is independent by default.

If you want to make them dependent on the success or failure of the previous processor, just add the ‘dependent’
property with value ‘True’ to the processor. This way all failed items will not be processed by the next processor, this
is useful for many purposes like coping files and renaming them, if a copy fails the file will not be renamed.

Note that the name property is a free tag, use it for giving a friendly name for your directory monitoring and processing
tasks. Make sure they are unique on their JSON structure. They will be used to create info files from AutoAnt named
on this example: DBCONTACTS.Remote.sav and DBCONTACTS.Remote2.sav. and your log file will have this tags
on each line.

12 Chapter 5. Quick HowTo



CHAPTER 6

Producers and Processors

All producers and processors share the following properties:

Key Description
name A unique user’s free tag to id the producer
type_key the type of producer, run autoant_console -p to list all available

All producers share the following properties

Key Description
thread Will run the producing process and it’s associated processor on a separate thread.

All processors share the following properties

Key Description
dependent A boolean property ‘True’/’False’ to make a processor dependent of the preceding processor success

13



AutoAnt Documentation, Release 0.2.0

14 Chapter 6. Producers and Processors



CHAPTER 7

Producer - Directory Monitor

This producer key is “dir_mon”. And produces FileItem objects.

This producer will scan recursively or not a local directory and collects all files to be processed

Configuration properties are:

Key Description
basedir The local directory to monitor
recursive (Optional) boolean string (True/False) collects file recu-

sively or not. Default is True
filter (Optional) regular expression, all files must pass.
mtime (Optional) Modification time stamp in minutes. If neg-

ative ex: -5 will produce files modified less then 5 min-
utes

ago.
If Positive ex: 5 will produce files modified more then 5 minutes

ago.

atime (Optional) Same has mtime but for accessed time stamp.
ctime (Optional) Same has mtime but for created time stamp.

Example: If you want to monitor only text files from a directory use:

{
"name": "AUTOANT",
"type_key": "dir_mon",
"basedir": "/home/dpgaspar/workspace/autoant/",
"filter": ".*.txt$"

}

15



AutoAnt Documentation, Release 0.2.0

16 Chapter 7. Producer - Directory Monitor



CHAPTER 8

Processors

All processors share a common property named state that can be True or False. By default it’s enabled. When
enabled, will not process items that were already processed on a previous run. If turned to False, it will always process
everything, every time.

Key Description
state Keeps state between runs. will record successfully processed items

17



AutoAnt Documentation, Release 0.2.0

18 Chapter 8. Processors



CHAPTER 9

Processor - SCP

This processor key is “scp”

Will Put files remotely using SFTP protocol. Reconstructs missing directories structure. This processor needs python’s
excellent Paramiko package.

Their configuration properties are:

Key Description
remote_dir The remote directory where files will be copied to
remote_host Remote host IP or network name.
username The username for authentication
password (Optional) The password for authentication
key_filename (Optional) The key RSA file for authentication
timeout (Optional) The connection’s timeout.
channel_timeout (Optional) The channel timeout.

19



AutoAnt Documentation, Release 0.2.0

20 Chapter 9. Processor - SCP



CHAPTER 10

Processor - SMB

This processor key is “smb”

Will Copy files remotely using SMB protocol (Windows file share). Reconstructs missing directories structure. This
processor needs python’s excellent pysmb package.

Their configuration properties are:

Key Description
remote_dir The remote directory where files will be copied to
remote_host Remote host IP or network name.
remote_name The NETBIOS remote computer name.
local_name THE NETBIOS local computer name.
username The username for authentication
password (Optional) The password for authentication
timeout (Optional) The connection’s timeout.

21



AutoAnt Documentation, Release 0.2.0

22 Chapter 10. Processor - SMB



CHAPTER 11

Processor - FTP

This processor key is “ftp”

Will Put files remotely using FTP or FTPS protocol. Reconstructs missing directories structure.

Their configuration properties are:

Key Description
remote_dir The remote directory where files will be copied to
remote_host Remote host IP or network name.
remote_port (Optional) Remote host port number for FTP. (default 21)
username The username for authentication
password (Optional) The password for authentication
is_ssl_auth (Options) Encrypts authentication (True/False)
is_ssl_data (Optional) Encrypts data (True/False)
timeout (Optional) The connection’s timeout.
debug_level (Optional) python’s ftplib debug level, 0,1 or 2.

23



AutoAnt Documentation, Release 0.2.0

24 Chapter 11. Processor - FTP



CHAPTER 12

Processor - Rename

This processor key is “rename”

Will rename files using a python’s regular expression.

Their configuration properties are:

Key Description
rule_origin Regular expression to capture all or part of the filename
rule_destination Regular expression to transform the captured part from rule_origin

Example: Rename recursively all files with prefix “_”:

{
"name": "RENAME_1",
"type_key": "rename",
"rule_origin": "(.*)",
"rule_destination": "_\\1"

}

Attention if you run this example many times it will add up “_” ahead of file names.

25



AutoAnt Documentation, Release 0.2.0

26 Chapter 12. Processor - Rename



CHAPTER 13

Processor - Move

This processor key is “move”

Will move files to a different directory.

Their configuration properties are:

Key Description
dest_dir Destination directory

Example: Move files recursively:

{
"name": "MOVE_1",
"dest_dir": "/name/of/the/destination/dir"

}

27



AutoAnt Documentation, Release 0.2.0

28 Chapter 13. Processor - Move



CHAPTER 14

Processor - Copy

This processor key is “cp”

Will copy local files to a different directory.

Their configuration properties are:

Key Description
dest_dir Destination directory

Example: Copies files recursively:

{
"name": "COPY_1",
"dest_dir": "/name/of/the/destination/dir"

}

29


	Fixes, bugs and contributions
	Installation
	Using pip
	The Idea
	Quick HowTo
	Producers and Processors
	Producer - Directory Monitor
	Processors
	Processor - SCP
	Processor - SMB
	Processor - FTP
	Processor - Rename
	Processor - Move
	Processor - Copy

